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Abstract 

The main purpose of this study is to explore the carbon-reduction environmental 

benefits that can be achieved if benchmarking is used when Taiwanese semiconductor 

manufacturers are working to improve the technical efficiency of their carbon-reduction 

efforts.  The evaluation method used is as follows.  First, a technical efficiency 

measurement method capable of considering both desirable outputs and undesirable 

outputs is used to measure the technical efficiency of the carbon-reduction efforts, and 

to identify the benchmark firms with the best technical efficiency.  Next, an attempt is 

made to estimate the greenhouse gas reduction that is realized by the sample if their 

carbon-reduction efforts are accompanied by the implementation of a benchmarking 

system.  Finally, the monetary value of the greenhouse gas reduction is estimated, so as 

to develop a better understanding of the carbon-reduction benefits for the adoption of 

the process outlined above. 
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1. Introduction 

Following the enactment of the Greenhouse Gas Emission Reduction and 

Management Act (the “Act” henceforth) in Taiwan, it is anticipated that the general 

trend in government policy is toward the implementation of a cap-and-trade system for 

emission sources.  Assuming that technology levels remain unchanged in the near 

future, the imposition of compulsory emission reduction requirements on industry 

implies that emission sources across many industries need to bear extra costs in their 

production processes in order to reduce greenhouse gas emissions.  In other words, 

there will be a significant trade-off between production activity and carbon reduction 

measures.  A key issue that needs to be addressed to reduce the magnitude of this 

trade-off between production activity and carbon reduction measures is the question of 

how to maintain the steady development of outputs from economic activity when still 

meeting carbon reduction targets.  Among various approaches to tackling this issue, 

the key focus of attention for emission sources in many industries is, increasingly, the 

challenge of increasing the technical efficiency (TE) of management in emission source 

production processes, so that improvements in TE can be used both to fulfill the 

emission source’s responsibilities to the environment and achieve continuous economic 

growth. 

Conceptually speaking, what the TE indicator measures is the extent of the impact 

of the management techniques used by the decision-making unit (DMU) on the 

efficiency of production activities.  That is, the higher a given DMU’s TE is, the less 

factor inputs that DMU will require to achieve a specified level of output (or the more 

output can be achieved with a fixed quantity of factor inputs).  TE is thus concerned 

with the enhanced production efficiency that can be brought about by a DMU’s efforts 

in terms of improving its management. 

TE measurement is widely used in management studies to address a wide range of 

production management related issues.  As long as the inputs and outputs of 

production activity are defined, then it is possible to use TE measurement to evaluate 

whether or not a DMU has succeeded in improving its management.  From a 

methodological perspective, of the many different TE empirical measurement 

techniques that have been developed, the distance function method has been particularly 

widely used because it does not require input/output price data (which can be difficult to 

obtain); only quantitative data are needed to measure the TE of specific DMUs.  As 

regards output-oriented TE measurement, this mainly involves setting a fixed level of 

DMU inputs and then comparing the outputs of different DMUs; the DMU with the best 

performance is defined as the most efficient DMU.  With this type of traditional 

measurement method, which assumes strong disposability, undesirable outputs like CO2 
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emissions equivalent (CO2 henceforth) can be freely discarded without paying any price 

for them, and so they are usually left out of TE measurement with this method.  As a 

consequence, TE values measured using the traditional distance function cannot reflect 

the impact on TE of the cost of dealing with undesirable outputs (Chung et al., 1997; 

Färe et al., 2001; Dyckhoff and Allen, 2001; Seiford and Zhu, 2002; Färe et al., 2005; 

Yang and Pollitt, 2007; Zhou et al., 2008; Färe et al., 2015; Hampf and Krüger, 2015). 

To remedy the weaknesses of the distance function when it comes to measuring TE 

with undesirable outputs, previous research has proposed three alternative methods 

(Murty and Russell, 2002; Atkinson and Dorfman, 2002).  All of these methods seek to 

measure the impact of undesirable outputs on TE.  Of the three approaches, the 

directional distance function approach has emerged in recent years as the main method 

for measuring TE with undesirable outputs included, because it avoids the technical 

problems outlined above (Färe et al., 2001; Boyd et al., 2002; Lee et al., 2002; Färe et 

al., 2005; Arcelus and Arocena, 2005; Picazo-Tadeo et al., 2005; Färe et al., 2006; 

Kumar, 2006). 

Specifically, the main focus of this study is the use of a TE method based on the 

directional distance function approach to measure the technical efficiency of carbon 

reduction management in one of Taiwan’s key industries: the semiconductor industry.  

In addition, the study estimates the monetary value of the carbon reduction efforts, so 

that the results of carbon reduction can be presented in the form of an effectiveness 

indicator.  This paper is structured as follows: following this Introduction, Section 2 

explains the evaluation method used, Section 3 discusses the empirical data sources and 

the data processing procedures, Section 4 presents the empirical results and the analysis 

of these results, and Section 5 concludes this study. 

 

2. Evaluation Method 

2.1 Directional distance function 

Within the traditional scope of the production economics field, discussion of output 

sets was initially focused on presenting possible relationships between factor inputs and 

desirable outputs.  However, within a given production process, besides desirable 

outputs that create profits for the DMU, there may at the same time be undesirable 

outputs, i.e. various types of pollution that may be generated by production processes. 

For production decision-making analysis, it is necessary for undesirable outputs to 

be incorporated into the analytical framework.  The earliest attempt to improve the 

research method in this regard was the environmental production technology method 

proposed in Färe et al. (1989) to bring undesirable outputs into the output sets for 

analysis.  The core concept here is the idea that the desirable outputs and undesirable 
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outputs within the production process represent a kind of conjoint production; i.e. any 

increase in desirable outputs within the production process will inevitably be 

accompanied by undesirable outputs.  The cost that must be borne in order to reduce 

these undesirable outputs may take one of two forms, depending on the actual 

circumstances.  If the undesirable outputs are readily disposable, then reducing these 

undesirable outputs will not impose any significant costs.  Taking pollution generated 

during the production process as an example, if the producer is located in a jurisdiction 

where environmental regulation is weak, then the producer can freely emit pollutants 

into the natural environment without paying any significant cost for this; in production 

theory, this is referred to as “strong disposability.”  The other possibility is that 

reducing the undesirable outputs does impose significant costs.  For example, it may 

be necessary to reduce desirable outputs in order to control the increase in undesirable 

outputs, or to reallocate some of the resources that would otherwise have gone toward 

generating desirable outputs for use in the reduction of undesirable outputs; this is 

referred to as “weak dispensability.” 

In order to transform the above concepts into a useable analytical framework, 

Chung et al. (1997) proposed the concept of the “directional distance function” to 

describe the simultaneous impact of desirable outputs and undesirable outputs on the 

technical efficiency of production.  As defined in Chung et al., the directional distance 

function for the output set P (X) can be expressed as follows: 

 

𝐷0
⃗⃗ ⃗⃗ (𝑥, 𝑦, 𝑏; 𝑔) = 𝑚𝑎𝑥𝛽{𝛽: (𝑦 + 𝛽 ∗ 𝑔𝑦, 𝑏 − 𝛽 ∗ 𝑔𝑏) ∈ 𝑃(𝑥)}       (1) 

 

Where g = (𝑔𝑦, −𝑔𝑏) is the direction vector, denoting the movement of the DMU’s 

desirable outputs and undesirable outputs in such a way to achieve enhanced technical 

efficiency. 𝛽 represents the rate in which the efficiency of the DMU is improved 

through the movement of desirable outputs and undesirable outputs in the direction 

vector  g = (𝑔𝑦, −𝑔𝑏), where 𝛽 has a value  0.  If, for example, DMU 𝛽𝑖 has a  

value of 0.4 by comparison with the production boundary, then this indicates that the 

output set for this DMU must change to (𝑦 + 0.4 ∗ 𝑔𝑦, 𝑏 − 0.4 ∗ 𝑔𝑏) for it to be an 

efficient producer.  This means that the larger the value of 𝛽𝑖 is, the further the DMU 

is from the efficient production boundary, and the closer 𝛽𝑖 is to 0, the nearer that DMU 

is to the efficient production boundary. 

Chung et al. (1997) and later studies that make use of the directional distance 

function generally assumed that g = (1,-1).  In terms of production decision-making 

behavior, this implies seeking to maximize desirable outputs from the production process, 

rather than seeking to minimize undesirable outputs, with desirable outputs increasing at 
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the same rate that undesirable outputs decrease, i.e. 𝑔𝑦 = 𝑔𝑏 = 1.  If management 

behavior is consistent with this analytical framework, it can be seen that the setting of 

the direction vectors 𝑔𝑦 and 𝑔𝑏 is used to delineate the impact of different types of 

management behavior on the output sets. 

This idea can be explained by Fig. 1 below.  Assume an output set 𝑃(𝑥) which 

incorporates both desirable output y and undesirable output b, for a certain DMU, the 

current output set is (𝑦, 𝑏) = (𝑥).  If further assuming strong dispensability, then the 

output set should fall within the area outlined by points OEBCD.  Regarding the 

potential room for increase in production efficiency, the DMU can move up from output 

set (𝑥) to output set (𝑥2) using direction vector g = (1.0).  If, on the other hand, 

controlling undesirable outputs incurs a cost, i.e. assuming weak dispensability, then the 

output set should fall within the area outlined by points OABCD, and improving TE will 

only move the output set from (𝑥) to (𝑥3). 

 

A

B

C

O

D

desirable 

output 

y

E

(x)

(x1)

(x2)

(x3)

g=(gy,-gb)

undesirable output b

g=(gy,0)

 

Fig. 1 Environmental production technology Output sets and the directional distance 

function 

 

To obtain the TE of a DMU, the directional distance value needs to be converted 

into a function that can differentiate between b and y.  We therefore adopt the method 

employed in Färe et al. (2006), using the quadratic approximation function for the 

directional distance function, utilizing a parametric estimation method to obtain a 

solution.  We further use an approximation function that includes a desirable output 

(the output value indicator for the semiconductor indus), an undesirable output CO2, and 

three factor inputs, as shown in equation (2) below: 
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𝐷0
⃗⃗ ⃗⃗ (𝑥, 𝑦, 𝑏; 𝑔) =                   

𝛼0 + ∑ 𝛼𝑛𝑥𝑛

3

𝑛=1
+ 𝛽1y + 𝛾1b +

1

2
∗ ∑ ∑ ∝𝑛,𝑛′ 𝑥𝑛𝑥𝑛′

3

𝑛′=1

3

𝑛=1

+
1

2
∗ 𝛽2𝑦

2 +
1

2
∗ 𝛾2𝑏

2

+ ∑ 𝑣𝑛𝑥𝑛𝑏 + 𝑢𝑦𝑏 + ∑ 𝛿𝑛𝑥𝑛𝑦
3

𝑛=1

3

𝑛=1

 

(2) 

           
To ensure that the translation properties of the directional distance function remain 

unchanged after conversion, equation (2) must conform to all the constraints listed in 

equation (3) below: 

 
𝛽1 − 𝛾1 = −1, 𝛽2 = 𝛾2 = 𝜇, 𝛿𝑛 − 𝑣𝑛 = 0, 𝛼𝑛,𝑛′ = 𝛼𝑛′𝑛, 𝑛, 𝑛′ = 1,2,3.    (3) 

 

where 𝛼, 𝛽, 𝛾, 𝑣, 𝜇, 𝛿, are all unknown coefficients. 

In the calculation, if we assume that there are k DMUs, then equation (2) can be 

solved using the (4-1) to (4-7) program shown below: 

 

 0min[ , , ;1, 1 1]k k kD x y b       (4-1)    

s.t.:  0 , , ;1, 1 0, 1,2,3....k k kD x y b k K     (4-2) 

 0 , , ;1, 1 / 0, 1,2,3....k k kD x y b y k K      (4-3) 

 0 , , ;1, 1 / 0, 1,2,3.... .k k kD x y b x k K      (4-4) 

 0 , , ;1, 1 / 0, 1,2,3.... .k k kD x y b b k K      (4-5) 

 2
0 , , ;1, 1 / 0, 1,2,3.... .k k kD x y b y b k K       (4-6) 

 2
0 , , ;1, 1 / 0, 1,2,3.... .k k kD x y b y y k K       (4-7) 

 

2.2 Social cost of carbon 

An examination of the methods used in this field shows that, currently, the most 

widely used environment/cost benefit indicator for measuring reductions in greenhouse 

gas emissions is the social cost of carbon (SOC) (Interagency Working Group on Social 

Cost of Carbon, United States Government, 2010).  In methodological terms, the SCC 

mainly employs a climate module Integrated Assessment Model (IAM) to implement 

assessment.  The IAM model makes various assumptions with respect to the impact of 

climate change on the economy, e.g. assumptions regarding trends in greenhouse gas 

emissions, changes in global temperatures, and other possible effects of climate change, 

such as rising sea levels, changes in the intensity of precipitation, increased incidence of 

extreme weather events, etc.  The IAM model can be used to gauge the losses that 
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climate change from greenhouse gas emissions causes to society; this in turn can be 

used to provide a quantitative measurement of the costs incurred from every ton of CO2 

emissions, and the environmental benefits arising from every ton by which CO2 

emissions are reduced (United States Environmental Protection Agency, 2015). 

As regards to the practical implementation of the SOC concept in relation to 

government policy, the U.S. government established an Interagency Working Group on 

Social Cost of Carbon (SCC) in 2009.  The purpose of this Working Group was to 

calculate the monetary benefits for every ton by which CO2 emissions are reduced; the 

Working Group published its first SCC Assessment Report in 2010 (Interagency 

Working Group on Social Cost of Carbon, United States Government, 2010), followed 

by a second report in 2013, and a revised third report in July 2015 (Interagency 

Working Group on Social Cost of Carbon, United States Government, 2015).  The 

Working Group’s reports mainly utilize the world’s three mostly widely used IAM 

models – the Policy Analysis of the Greenhouse Effect PAGE) model (Hope, 2013), the 

Dynamic Integrated model of Climate and the Economy (DICE) model (Nordhaus and 

Sztorc, 2013), and the Climate Framework for Uncertainty, Negotiation and 

Distribution (FUND) model (Anthoff and Tol, 2010) – to calculate the amount of harm 

caused globally by every ton of CO2 emissions on the basis of a “global yardstick.” 

As the basis of calculation is global, and as the effects of CO2 emissions are 

non-segmented, the figures given in the Working Group reports for the harm caused by 

CO2 emissions are applicable globally (i.e. the impact on the Earth of one ton of 

emissions originating in Taiwan is the same as one ton of emissions originating in the 

U.S.).  This means that “harm” in this case should not be taken to mean harm caused 

to any specific locality; rather, it represents the harm caused to the planet as a whole by 

excessively high emissions.  Similarly, the social benefits deriving from efforts to 

reduce emissions are also global in scope, rather than being limited to a specific country. 

In calculating SCC, the Working Group first determines the values for SCC obtained 

with each of the three IAM models listed above, i.e. DICE, PAGE, and FUND, and then 

calculates the average of these values. 

Calculation of the environmental benefits from the total amount of emission 

reduction is the multiplication of emissions reduction and its corresponding SCC value.  

SCC is not only widely used by the U.S. government when calculating the 

environmental benefits from emissions reduction policies, but is also used by many 

government agencies such as in the U.K. for assessing the effectiveness of government 

policies (Paul, 2013).
1
  The basis of the method outlined above, this study uses the 

                                                      
1
 According to Paul (2013), British government agencies that use SCC for policy evaluation include the 

Department for Environment, Food and Rural Affairs (Defra), the Department for Transport (DFT), the 
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SCC method to evaluate the environmental benefits from carbon reduction from the 

implementation of benchmarking in the Taiwanese semiconductor industry. 

 

3. Empirical Data Sources and Data Processing 

The empirical analysis undertaken here requires data for input and output variables 

in the production processes of the Taiwanese semiconductor industry.  There are two 

types of output variable to be considered.  The first is desirable outputs, i.e. an 

indicator measuring the value of the products created during the production process that 

can provide economic benefits for the producer.  This study uses the product sales 

revenue of individual semiconductor manufacturers for this indicator.  The second type 

of output variable is undesirable output, which is defined as the volume of greenhouse 

gas emissions generated during the production process by the semiconductor industry.  

Past studies have generally used indicators such as capital stock, labor utilization, and 

cost of goods sold for input variables.  Based on the available empirical data, this study 

then used labor factor costs, net capital, and cost of goods sold as the input variables. 

As a result of policy planning requirements
2
, the Environmental Protection 

Administration (EPA), Executive Yuan in Taiwan used a survey to collect variable data 

for firms in five targeted industries (including the semiconductor industry focused on 

here) in 2010; the data that firms were required to provide included energy usage data 

for different years, CO2 emission volume calculated using the carbon emissions 

coefficient method, product output (calculated within the production boundary), etc.  

However, it is readily apparent from the data included in this EPA database that the 

specifications of the products manufactured by individual semiconductor firms vary 

significantly.  For example, in the case of IC wafer products, the database records 

output of 6-inch, 8-inch, and 12-inch wafers, etc.  Some firms may produce only one 

product type, while others may produce several.  Given the difficulty in implementing 

assessment on the basis of a breakdown of product types, it was decided to sum together 

the CO2 emissions totals for different product types to provide a single indicator for 

undesirable outputs. 

Obtaining the data required for desirable outputs (i.e. product sales revenue) and 

                                                                                                                                                            
Department for Trade and Industry (DTI), the Office of Gas and Electricity markets (OFGEM), the 

Office of the Deputy Prime Minister (OPDM), and the Environment Agency (EA). 
2
 To encourage the private sector to implement voluntary emission reductions, the Environmental 

Protection Administration (EPA) launched the Early Action Project and Offset Project in 2010. 

Through participation in these two projects, firms could obtain emission credits, which could be offset 

against voluntary carbon neutralization commitments and greenhouse gas emission reduction 

commitments in relation to environmental impact assessments. Initially, the projects targeted firms in 

five industries: the cement industry, the iron and steel industry, the electric power industry, the LCD 

display industry, and the semiconductor industry. 
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for inputs was much more challenging, because there is lack of existing databases.  To 

overcome this problem, a search of relevant data for stock-market-and OTC-listed 

companies available from Taiwan’s Market Observation Post System (The Taiwan Stock 

Exchange Inc. & Taipei Exchange., 2016) was taken as the starting point; in addition, 

financial data for individual firms were collected for consecutive years, so as to provide 

the data needed for the desirable outputs and inputs variables.  The main problem for 

firms’ financial data is that the data included in the EPA database are structured by 

factory, not by company; to ensure consistency with the company-based financial data, 

the data for different factories belonging to the same company were added together.  

Following this data processing, the empirical data comprised data for nine 

semiconductor firms, with a total of 81 observations covering the period 2002 – 2010.  

To remove the impact of price fluctuations, data expressed in monetary terms were 

deflated using 2010 as the base year.  A summary of the basic statistical results 

obtained is shown in Table 1 below. 

 

Table 1 Descriptive Statistics for Empirical Variables 

Item 

 

Net Sales 

Revenue 

(NT$ 

thousands) 

CO2 Emissions 

(tons/year) 

 

Salary 

Expenses 

(NT$ 

thousands) 

 

Net Fixed Assets 

(NT$ thousands) 

 

Cost of Goods 

Sold 

(NT$ 

thousands) 

Mean 63,772,080 764,782 5,942,103 72,425,693 46,193,426 

Standard 

Deviation 

85,105,759 

 

846,953 

 

7,513,427 

 

74,004,984 

 

47,390,512 

 

Maximum 

Value 

406,963,312 

 

3,387,736 

 

46,043,721 

 

366,854,299 

 

209,921,268 

 

Minimum 

Value 

2,704,741 

 

48,714 

 

819,357 

 

1,945,441 

 

2,876,877 

 

Note: Data expressed in monetary terms were deflated using 2010 as the base year. 

 

To evaluate the effectiveness of carbon reduction efforts, the SCC method was 

used.  SCC data was derived mainly from a report prepared by the United States 

Environmental Protection Agency (2015).  The SCC in the report covers the period 

2015 – 2050.  The results given for later years in this period have a high degree of 

uncertainty.  This study then uses the SCC results for 2015 as the basis for calculation.  

On the basis of the SCC data shown in Appended Table 1, at discount rates of 5%, 3%, 

and 2.5%, the SCC for 2015 is calculated to be US$11, US$36, and US$56 respectively.  

Regarding the choice of discount rate, the Environmental Protection Administration, 

Executive Yuan (2014) suggested using the interest rate on 20-year government bonds 

as the discount rate indicator.  The interest rate on government bonds in Taiwan in 

2015 was 2.98% (Central Bank, 2015), which is closest to the 2.5% discount rate in the 
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SCC data, so it was decided to use the 2.5% discount rate for SCC data.  That is, an 

SCC is equivalent to US$56 per ton as the basis for evaluation.  With the average 

US$1 to New Taiwan Dollar NT$31.93 exchange rate in 2015 (Central Bank, 2016), the 

SCC is equal to NT$1,788 per ton. 

 

4. Discussions of Empirical Results 

The General Algebraic Modeling Systems (GAMS) software was used in 

combination with a non-linear algorithm method to estimate the results of equations 

(4-1) to (4-7); the coefficient estimation results are then transposed into equation (2) to 

estimate the TE value of each DMU.  The directional distance function estimation 

results are shown in Table 2.  Finally, the TE value was used to calculate the carbon 

reduction results and increase in revenue that could be achieved if a given firm learned 

from the management techniques used by a benchmark firm; a summary of the results is 

shown in Table 3. 

Regarding the interpretation of the calculation results, the TE value represents the 

efficiency of the carbon reduction techniques used calculated by the directional distance 

function method.  The closer the TE value is to zero, the more efficient the production 

techniques used are; the further away the TE value is from zero, the greater the gap 

between the performance of the DMU and that of the benchmark firm.  This 

phenomenon indicates that there is considerable room for improvement.  The empirical 

estimation results show that 14 of the DMUs had a TE value of zero.  This shows that 

the DMUs of this study displayed the best performance in terms of the TE of carbon 

reduction management for the 81 sampling points and were therefore designated as the 

benchmark firms.  The TE values for the other DMUs were calculated by comparison 

with these benchmark DMUs. 

For instance, if a given DMU is calculated to have a TE value of 0.02, then this 

indicates that, by comparison with the benchmark DMUs, this DMU has room to 

achieve a 2% increase in revenue and a 2% decrease in CO2 emissions.  In managerial 

terms, if the DMU learns emissions management techniques from a benchmark DMU of 

similar size, then it can boost its overall revenue by 2%, at the same time adjusting its 

production processes to realize a 2% reduction in CO2 emissions.  Based upon the 

empirical results obtained in this study, the mean TE value for the sample can be 

calculated to be 0.1605.  This indicates that, on average, the 81 DMUs that constitute 

the sample could achieve an average reduction in emissions of 16.05% and an average 

increase in revenue of 16.05%.  In absolute terms, each DMU can boost its sales 

revenue by about NT$66 billion per year through benchmarking, on average, and at the 

same time reduce annual emissions (per DMU) by 88,743 tons of CO2.  In terms of the 
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total impact, the total increase in revenue deriving from the increased TE value would 

be about NT$533.7 billion per year, and the total reduction in CO2 emissions would be 

7,188,168 tons per year (it should be noted that, as 14 of the DMUs are designated as 

benchmark DMUs, it is only the remaining 67 DMUs that would see an improvement in 

TE). 

 

Table 2 Coefficient Estimation of Directional Distance Function 

Coefficient  Variable Coefficient Estimation 

   

0  Constant term 0.328  

1  Salary expenses ( 1x ) 0.059  

2  Net fixed assets ( 2x ) -0.013  

3  Cost of goods sold ( 3x ) 0.207  

1  Real GDP( y ) -0.650  

1 1 1    CO2 emissions (b ) 0.350  

11  2

1x  -0.130  

12  1 2x x  -0.039  

13  1 3x x  -0.086  

22  2

2x  0.061  

23  2 3x x  -0.049  

33  2

3x  -0.018  

2 2     2 2, ,y yb b  -0.081  

1 1   1 1,x y x b  0.166  

2 2   2 2,x y x b  0.023  

3 3   3 3,x y x b  0.030  

    

 

Having completed the calculations outlined above, it is now possible to determine 

the reduction in annual CO2 emissions that semiconductor firms can obtain through 

benchmarking.  Using an estimated value of the benefits from carbon reduction per 

unit of SCC under the baseline year 2015, the benefits from carbon reduction (in 

monetary terms) resulting from the raising of the TE of each DMU can thus be 

estimated.  Since the SCC per ton of CO2 is NT$1,788, using this magnitude together 

with the reduction in CO2 emissions deriving from the improvement in TE achieved 

through benchmarking, it is possible to calculate the benefits from carbon reduction. 

On the basis of the estimation results shown in Table 3 above, if each DMU uses 

benchmarking to learn superior emission management techniques from the benchmark 
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firms, then on average the resulting improvement in the efficiency of carbon reduction 

techniques will provide each DMU with carbon reduction benefits that, in monetary 

terms, equate to about NT$1.6 billion per year.  Overall, the combined benefits to the 

36 DMUs that achieve an increase in TE will total about NT$12.9 billion per year. 

 

Table 3 Summary of TE Estimation Results 

Item TE Vale 

Increase in Revenue 

from TE Improvement 

(NT$ thousands / year) 

Reduction in CO2 Emissions from 

TE Improvement (tons / year) 

Value of Reduction in CO2 

Emissions from TE 

Improvement (NT$ 

thousands / year) 

Mean 0.1607 6,588,383 88,743 158,672  

Standard 

Deviation 
0.1325 6,655,098 95,476 170,712  

Maximum 

Value 
0.68 24,537,944 363,046  649,126  

Minimum 

Value 
0 0     0      0 

Note: Data expressed in monetary terms were deflated using 2010 as the base year. 

 

5. Conclusion 

Utilizing the directional distance function method to measure the technical 

efficiency (TE) of carbon reduction, this study seeks to measure carbon reduction TE in 

the Taiwanese semiconductor industry.  With measurement of TE, the study goes on to 

integrate the social cost of carbon (SOC) methodology in calculating the monetary 

terms of carbon reduction benefits from the improvement in carbon reduction TE. 

On the basis of the estimation results obtained in the study, 14 of the 81 

decision-making units (DMUs) included in the sample are selected as benchmark 

DMUs.  This indicates that these 14 DMUs have technical efficiency superior to that 

of the other 67 DMUs.  By performing estimation of the directional distance function, 

it is possible to calculate the efficiency gap between these 67 DMUs and the benchmark 

DMUs.  From a policy-making perspective, the significance of this is that there is 

significant room for these 67 DMUs to improve their management techniques and 

methods (as opposed to their level of production technology) by bringing them up to the 

level of the benchmark DMUs.  Assuming that there is no significant disparity 

between the DMUs in terms of the achievable level of production technology, then if 

benchmarking is performed for the 67 DMUs with lower TE, once the TE of their 

carbon reduction management has been raised to a level comparable to that of the 

benchmark DMUs, it should be possible to realize both a significant increase in revenue 

and a significant reduction in CO2 emissions. 

Based on the empirical estimation results obtained in this study, it can be seen that 

using benchmarking to raise the TE of carbon reduction management would, on average, 
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boost the annual sales revenue of each DMU by about NT$66 billion, while also 

reducing the average annual CO2 emissions per DMU by 88,743 tons.  Overall, the 

combined increase in revenue for all the semiconductor firms included in the study 

would total NT$533.7 billion per year, and the combined reduction in CO2 emissions 

would total 7,188,168 tons.  As regards the benefits from carbon reduction, the average 

carbon reduction benefits for each DMU would amount to approximately NT$1.6 

billion per year; overall, the combined carbon reduction benefits for all 36 DMUs 

included in the sample would be about NT$12.9 billion per year.     
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